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ABSTRACT (this variation may be represented by another “coordi-
nate,” �, which is usually suppressed to simplify notation).We consider transient flow in unsaturated heterogeneous porous
Whereas spatial moments are obtained by samplingmedia with uncertain hydraulic parameters. Our aim is to provide un-

biased predictions (estimates) of system states, such as pressure head, A(x) in physical space (across x), ensemble moments
water content, and fluxes, and to quantify the uncertainty associated are defined in terms of samples collected in probability
with such predictions. We achieve this goal by treating hydraulic space (across �). The ergodicity hypothesis is invoked
parameters as random fields and the corresponding flow equations to equate the two.
as stochastic. Current stochastic analyses of transient flow in partially If the statistical properties of A(x) and other relevant
saturated soils require linearization of the constitutive relations, which random parameters can be inferred from measurements,
may lead to significant inaccuracies when these relations are highly

one can use them as inputs for stochastic flow equations.nonlinear. If relative conductivity and saturation vary exponentially
Solutions of stochastic equations are given in terms ofwith pressure and the corresponding scaling parameters are random
the probability density functions (PDF) of system states,variables, the transient Richards equation is mapped onto a linear
such as pressure and saturation. Since, in general, suchequation by means of the Kirchhoff transformation. This allows us

to develop deterministic differential equations for the first and second PDFs are non-Gaussian, they are characterized by an in-
ensemble moments of pressure and saturation. We solve these equa- finite number of the corresponding statistical moments.
tions analytically, for vertical infiltration, and compare them with In stochastic hydrogeology, it is common to compute
direct Monte Carlo simulations. only the first two statistical moments, i.e., the mean and

(co)variance. The former provides an estimate of the
system state, while the latter quantifies the uncertainty

Subsurface flow takes place in complex environ- associated with this estimate.
ments, whose parameters are seldom, if ever, known Monte Carlo simulations (MCS) are often used to cal-

in all of their relevant details. Instead, such parameters culate these moments. The law of large numbers is a
are at best measured, or inferred, at selected locations. foundation of MCSs, which consist of (i) generating a
Estimation of parameters at points where data are not sufficient number of realizations of the parameter fields
available entails random errors. Quite often, the mea- A(x), (ii) solving deterministic flow equations for each
surement support is uncertain and the data are cor- realization of A(x), and (iii) analyzing statistically these
rupted by experimental and interpretive errors. These solutions to obtain the first few moments of the system
errors and uncertainties render hydraulic parameters states. Advantages and drawbacks of MCS have been
random and the corresponding flow equations stochas- discussed at length by Dagan (1998) and Tartakovsky
tic. The Idaho National Engineering and Environmen- et al. (1999), among many others. Of importance to the
tal Laboratory (INEEL) site is a prime example of these our study is that MCSs provide no physical insight into
complexities. The vadose zone at the INEEL site is on the physical behavior of a random system and that their
average 137 m (450 feet) deep and consists of basalt numerical accuracy is highly questionable. In particular,
and soil layers. Despite extensive site characterization well-established nonlocality of the (ensemble) averaged
efforts, its hydraulic and transport parameters remain Darcy Law (e.g., Dagan, 1989; Cushman, 1997; Tarta-
uncertain. kovsky and Neuman, 1998) cannot be discerned from

Within the stochastic framework, the parameter val- MCS, and their notorious unreliability has led Dagan
ues, determined at various points within a more or less (1998) to conclude that MCS “may serve as a reliable
distinct soil unit, are viewed as samples from a random tool for validating approximate theoretical results only
field defined over a continuum. This random field is after making sure that various authors arrive at similar
characterized by a joint (multivariate) probability den- results albeit by different methods.”
sity function or, equivalently, its joint ensemble mo- Derivation of deterministic equations for the statisti-
ments. Thus, a parameter A(x) varies not only with the cal moments of system states represents a viable alterna-
physical space coordinate, x, but also in probability space tive to MCS. Since the coefficients of moment differen-

tial equations (e.g., K, mean hydraulic conductivity) are
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mally limit their applicability to mildly heterogeneous for the mean and variance of pressure head and satura-
tion. These equations are solved analytically for one-media (� 2

Y � 1). However, numerical experiments have
demonstrated that solutions of moment differential dimensional vertical infiltration. Finally, we compare them

with MCSs, which are traditionally viewed as exact. Weequations (MDEs) for linear processes, such as satu-
rated flow and transport of conservative contaminants, demonstrate that, under transient flow conditions, even

in a relatively simple one-dimensional setting, Monteremain accurate and robust for moderately heteroge-
neous media with � 2

Y as high as 4 (Guadagnini and Carlo results must be treated with caution.
Neuman, 1999).

The nonlinearity of the Richards equation greatly MODEL FORMULATION
complicates the stochastic treatment of flow in partially

Following Russo (1992) and others, we start from thesaturated porous media. Virtually all previously published
premise that Darcy’s Law,moment analyses of steady-state and transient unsatu-

rated flows (e.g., Andersson and Shapiro, 1983; Yeh et al., q(x*,t*) � �K(x*,�)�*[�(x*,t*) � x*3 ] [1]
1985a, 1985b; Mantoglou and Gelhar, 1987; Yeh, 1989;

applies when the flux, q, the unsaturated hydraulic con-Mantoglou, 1992; Russo, 1995; Ferrante and Yeh, 1999)
ductivity, K, and the pressure head gradient, �*�, arehave used Taylor expansions of the relative hydraulic
representative of a support (measurement) volume � cen-conductivity Kr(�) around a mean pressure �, often
tered about the point x* � (x*1 , x*2 , x*3 )T, where x*3 is theemploying a linearization Kr(�) ≈ Kr(�). This may lead
vertical coordinate (taken to be positive downward).to significant errors when these relations are highly non-

Consider transient flow in a heterogeneous domainlinear. Indeed, for these approaches to be accurate and
�*, which is large in comparison with the support � androbust, the corresponding infinite Taylor series must be
is bounded by a surface 	*. Flow is governed by theapproximated accurately by a finite number of terms
continuity equation,(often just by the leading term!). This requires, in turn,

that the variance of pressure, � 2
�, or, more precisely its �


�t*
� ��*•q(x*,t*) � f*(x*,t*), x* � �* [2]coefficient of variation, �� /�, be small. Clearly, this con-

dition cannot be verified a priori, since it involves the
unknown pressure statistics. Moreover, random pres- subject to the initial and boundary conditions
sure is expected to be statistically nonhomogeneous, lead-

�(x*, 0) � �in(x*), x* � �* [3a]ing to nonuniform accuracy throughout a flow domain.
Recently, the Kirchhoff mapping (Tartakovsky et al., �(x*,t*) � �(x*,t*), x* � 	*D [3b]

1999) and a Gaussian approximation (Amir and Neu-
�q(x*,t*)•n*(x*) � Q*(x*,t*), x* � 	*N [3c]man, 2001) have been proposed as alternative approaches

to derive, without resorting to the linearization Kr(�) ≈ Here f* is a (random) source function, �in is a (random)
Kr(�), moment equations for unsaturated flow. Specifi- initial pressure head distribution, � is a (random) pres-
cally, Tartakovsky et al. (1999) and Lu et al. (2002) used sure head on Dirichlet boundary segments 	*D, Q* is a
Kirchhoff mapping to analyze steady-state flow with (random) flux across Neumann boundary segments 	*

N,
Gardner’s (1958) model of the relative hydraulic con- n* � (n*1 , n*2 , n*3 )T is a unit outward normal to the boun-
ductivity, Kr � exp(�). In these analyses, the fitting dary 	*, and 	* � 	*D � 	*

N. Although it is not strictly
parameter  has been treated as a random constant. necessary, we assume for simplicity that the source, ini-
Tartakovsky et al. (2003a) demonstrated that this re- tial, and boundary functions f, �in, �, and Q* are pre-
striction can be relaxed to allow  to be a random field. scribed in a statistically independent manner.
The Gaussian approximation of Amir and Neuman We take the constitutive relationships to be given by
(2001) requires that both saturated hydraulic conductiv-

K(x*,�) � Ks(x*)Kr(�), Kr(�) � e� [4a]ity Ks and the fitting parameter  be random constants,
rather than random fields, and assumes that the random and
pressure field �(x) is Gaussian throughout the flow do-


 � 
r � (
s � 
r)e� [4b]main. Tartakovsky et al. (2003b) extended the applica-
bility of Kirchhoff mapping to steady-state, gravity-free where Ks and Kr are saturated and relative hydraulic
unsaturated flows with more realistic models of Kr(�), conductivities, respectively; 
r is residual (irreducible)
such as the Brooks–Corey and van Genuchten models. water content, 
s is porosity, and  is the reciprocal of the
Their analysis revealed that the Kirchhoff mapping leads macroscopic capillary length scale (Raats, 1976). Spatial
to more accurate solutions than does the Gaussian ap- variations in the constitutive parameters Ks and , cou-
proximation, especially in the vicinity of flow domain’s pled with a lack of detailed information about their spa-
boundaries. tial distributions, render Ks and  random. This and the

The main goal of our study is to use the Kirchhoff map- uncertain forcing terms in Eq. [1] through [4] render
ping to analyze transient unsaturated flow in randomly these differential equations stochastic.
heterogeneous porous media. In the next section we pro- The limitations and applicability of the constitutive
vide a mathematical formulation of unsaturated flow in relationships (Eq. [4]) are thoroughly discussed in a re-
randomly heterogeneous soils and discuss assumptions view by Pullan (1990). These relationships have been
and limitations that are necessary for the subsequent used extensively to analyze various aspects of transient

unsaturated flow in homogeneous soils by Warrick (1975),analysis. We then derive deterministic moment equations
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Philip (1986), and Basha (1999), among many others. � coincides with matrix potential and reduced satura-
tion. If � were deterministic, that is, if the randomnessThis study is the first to use these constitutive laws to

analyze transient flow in heterogeneous soils with uncer- were due to the driving forces f, Hin, H, and Q only, the
Kirchhoff mapping would yield the exact averaged equa-tain hydraulic parameters.

Another important assumption is that we require the tion for �. This relatively simple setting corresponds, for
example, to unsaturated flow, where the major sourceparameter  to be a random constant rather than a ran-

dom field. Tartakovsky et al. (1999) explored the extent of uncertainty is the infiltration or evapotranspiration
rates.to which this assumption is justified by providing a re-

view of published studies concerning spatial variability Experimental data reviewed by Tartakovsky et al.
(1999) suggest that, in the majority of soils, the param-of . Hence, we feel that this assumption is a relatively

small price to pay for the advantage of preserving con- eter � � lnA is much less variable than the log conductiv-
ity Y � ln�. For such soils, we can simplify the analysisstitutive nonlinearity. Moreover, as demonstrated by

Tartakovsky et al. (2003a), the results corresponding to by considering only the zeroth-order approximation in
� 2

�, the variance of �, together with the ith order approx-constant  can serve as a “partial mean-field” approxi-
mation of a solution to the Richards equation with ran- imations in � 2

Y, the variance of Y. Using the Reynolds
decomposition to represent random fields and variables,dom (x), provided that its correlation length is rela-

tively large. X � X � X�, as the sum of the means, X, and zero-
mean fluctuations, X�; taking the ensemble mean of Eq.
[8]; expanding �(x,t), �(x), and other relevant param-GENERAL THEORY
eters in powers of Y�(x), the random fluctuations of Y;

Applying the Kirchhoff mapping, and collecting terms of the like powers of �Y, the stan-
dard deviation of Y, yields the ith order approximation

�*(x*,t*) � �
�(x*,t*)

�∞
Kr(s)ds �

1


e� [5] of the mean flow equation (Appendix A),

to Eq. [1], [2], and [3] yields ��(i)

�t
� a�1�2�(i) �

��(i)

�x3

� fi, x � � [10]

(
s � 
r)
��*(x*,t*)

�t*
� �*•[Ks(x*)�*�*(x*,t*)] � subject to the initial and boundary conditions

�(i)(x,0) � H (i)
in (x), x � � [11a]


�

�x*3
[Ks(x*)�*(x*,t*)] � f*(x*,t*) [6]

�(i)(x,t) � H (i)(x,t), x � 	D [11b]
The initial and boundary conditions (Eq. [3a]–[3b]) are a�1n•��(i)(x,t) � n3�

(i)(x,t) � Qi(x,t), x � 	N [11c]
transformed in a similar manner.

In principle, the perturbation expansion (Eq. [10]–[11])Introducing dimensionless time and space coordinates,
can be performed to any order i and is valid for an
arbitrary statistical distribution of �. If � is log normal,t �

t*Kg

(
s � 
r)L3

and � � L3�* [7a]
the odd terms in this expansion vanish, while the even
terms form an expansion in powers of � 2

Y. (Note that,as well as dimensionless parameters and dependent vari-
for any distribution of �, first-order approximations inables,
� 2

Y correspond to second-order approximations in �Y).
For the first two terms in this expansion, the source,A �



g

, a � gL3, � �
Ks

Kg

, f �
f*

gKg

,
initial, and boundary functions in Eq. [10] through [11]
are given by

� �
�*
L3

, � �
�*
L3

[7b]
f0 � f, f1 � a�1�•��

2
Y

2
��(0) � r(1)� �

transforms Eq. [6] into
�

�x3
��

2
Y

2
�(0) � C (1)

��� [12a]A
��(x,t)

�t
� a�1�•��(x)��(x,t)� �

H (0)
in � a�1e a�in, H (1)

in � 0 [12b]
A

�

�x3

��(x)�(x,t)� � f(x,t) [8] H (0) � a�1e a�, H (1) � 0 [12c]

subject to Q0 � Q, Q1 � �a�1n•��
2
Y

2
��(0) � r(1)��

�(x,0) � Hin(x), Hin(x) �
1

aA
e aA�in, x � � [9a]

n3 ��
2
Y

2
�(0) � C (1)

��� [12d]

� � H, H �
1

aA
eaA�, x � 	D [9b]

The first-order (in � 2
Y) approximations of the cross-

covariances r(x,t) � ���(x)���(x,t) and C��(y;x,t) �
��(y)��(x,t) are given by (see Appendix A)a�1���•n � An3�� � Q, Q �

Q*
aKg

, x � 	N [9c]

r(1)(x,t) � a�1�
t

0
�
�

CY(x,y)�x�
T
y G(0)�y�

(0)dyd� �Note that, in this formulation, the Kirchhoff variable
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tities are given directly in terms of the statistics of �.
The pressure statistics are given by (Tartakovsky et al.,�

t

0
�
�

CY(x,y)�(0)�x
�G(0)

�y3

dyd� [13]
1999)

and
�(0) � ln�(0), �(1) � �(1))/�(0) �

1
2
�� 2

��(1)/�(0)2 [19]
C (1)

��(y;x,t) � �a�1 �
t

0
�
�

CY(y,z)�zG(0)•�z�
(0)dzd� �

and
�

t

0
�
�

CY(y,z)�(0) �G(0)

�z3

dzd� [14] �� 2
��(1) � �� 2

��(1)/�(0)2 [20]

The above systems of deterministic moment equationsHere CY(y,x) � Y�(x)Y�(y) is the covariance of Y�,
involve relatively smooth parameters and dependentand the Green’s function G(0)(y,x,t � �) satisfies the de-
variables that are defined on a consistent support scaleterministic differential equation
�, identical to that of all measurements. As such, these
moment equations can be solved either analytically as�

�G(0)

��
� a�1�2

yG(0) �
�G(0)

�y3

�
we do below or, more generally, by standard numerical
methods, such as finite elements, on relatively coarse�(y � x)�(t � �) y,x � � [15]
grids without upscaling.

subject to the homogeneous initial and boundary condi-
tions ONE-DIMENSIONAL INFILTRATION

G(0)(y,x,0) � 0, y � �, [16a] The remainder of this paper is devoted to the develop-
ment and exploration of an approximate solution forG(0)(y,x,t � �) � 0, y � 	D [16b]
the above moment equations. In particular, we obtain

n�yG(0)(y,x,t � �) � 0, y � 	N [16c] an analytical solution for one-dimensional infiltration
into an initially dry column of a porous medium. Infiltra-The derived set of equations is recursive in that the
tion is driven by a deterministically prescribed flux Q*lower-order approximations serve as an input, through
at the inlet, z � 0. (We use a new coordinate z � x3 tothe driving forces, into the higher-order approximations.
emphasize the one-dimensional nature of our example.)The zeroth-order approximation of the mean matrix po-
An initially dry medium corresponds to the initial condi-tential, �(x), satisfies a standard deterministic equation
tion �in � �∞, or Hin � 0, and to the boundary conditionfor unsaturated flow in a soil with known properties,
� � �∞, or H � 0, at infinity, z � ∞. We derive per-driven by mean source and boundary functions. Non-
turbation solutions in a small parameter � 2

Y, the variancelocality of the mean unsaturated flow equation, that is,
of a one-dimensional multivariate Gaussian and statisti-dependence of the mean Darcy flux q at a point x at
cally homogeneous field Y(z) � ln �, with constanttime t on the mean matrix potential gradient �� at all
mean Y and an exponential (spatial) autocovariancespace–time points in the computational domain, mani-
functionfests itself in second- and higher-order approximations.

To our knowledge, nonlocality has been left out of previ-
CY(z,y) � � 2

Y exp��|z � y|
� � [21]ous stochastic analyses of transient unsaturated flow.

The first-order approximation of the autocovariance
function C�(x,t;y,�) � ��(x,t)��(y,�) of the Kirchhoff � being the spatial autocorrelation scale of Y, normal-
transform � is obtained as the solution of ized with a characteristic length L3.

Denoting�C (1)
�

�t
� a�1�2

xC
(1)
� �

�C (1)
�

�x3

� a�1�x �0 � �(0), �1 � �(1), �2 � C (1)
� [22]

recasts Eq. [10] and [17] in the form of an advection–
�C (1)

��(x;y,�)�x�
(0)� �

�

�x3

�C (1)
��(x;y,�)�(0)� [17] diffusion equation,

��j

�t
� a�1 �2�j

�z2
�

��j

�z
� fj , 0 � z � ∞, j � 0,1,2subject to the initial and boundary conditions

C (1)
� (x,0;y,�) � 0, x � � [18a]

[23]
C (1)

� (x,t;y,�) � 0, x � 	D [18b]
The source functions fj are given by

a�1n��xC
(1)
� � C (1)

���x�
(0)� � f0(z,t) � 0,

n3 �C (1)
� � C (1)

���(0)� � 0, x � 	N [18c]
f1(z,t) �

� 2
Y

2
�

�z �a�1 ��0

�z
� �0 � �For the sake of simplicity, the source, initial, and bound-

ary functions are assumed to be deterministic. The first-
order approximation of the Kirchhoff variable variance, �

�z
�a�1r (1) � C (1)

��(z,t)�,
� 2

�(x,t), is obtained by taking the limit of C�(x,t;y,�) as
y → x and � → t.

f2(z,t;�,�) �
�

�z �C (1)
��(�;z,t) �a�1 ��0

�z
� �0 �� [24]Since the Kirchhoff variable � is related linearly to

Darcy’s flux, reduced saturation, and the wetting front
velocity, the statistics of these important physical quan- Equations [24] are subject to
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�j(z,0) � 0, ��a�1 ��j

�z
� �j �z�0

� qj, 5�1 �
az
2 �erfc�z√a

2√t � �
3(2 � az)

2
erfc�3z√a

2√t � �

�j(∞,t) � 0, j � 0,1,2 [25a]

�3 � a� � az �
z
� �exp� z

2�
�

t
4�2a �where

q0 � Q � Q*
aKg

[25b] erfc�z√a

2√t
�

√t

2�√a � �

q1 �
� 2

Y

2 ��a�1 ��0

�z
� �0 �z�0

�a�1r (1)(0,t) � C (1)
��(0,t) 1 � a�

2
exp�� z

2�
�

t
4�2a �erfc�z√a

2√t
�

√t

2�√a � �

� �
� 2

Y

2
Q � a�1r (1)(0,t) � C (1)

��(0,t) [25c] 3 � a�

2
exp�3z

2�
�

t
4�2a �erfc�3z√a

2√t
�

√t

2�√a � �

and
3 � a�

2
exp��3z

2�
�

t
4�2a �erfc�3z√a

2√t
�

√t

2�√a � �
q2 � �C (1)

��(0;�,�)��a�1 ��0

�z
� �0 �z�0

� �QC (1)
��(0;�,�)

3 � a�

2
exp��3z

2�
�

t
4�2a �erfc�z√a

2√t
�

√t

2�√a ��	 [29][25d]

The Green’s function for Eq. [23] through [25] has
in the perturbation expansion of the mean Kirchhoffthe form
variable � � �(0) � �(1) � ···.

As mentioned above, zeroth-order approximations of
G(0)(�,z,t) �

1
2 
 a

�t �exp�� a
4�√t �

� � z

√t �
2

� � e�a�

the ensemble mean system dynamics correspond to their
deterministic counterparts. In particular, Eq. [28] coin-
cides with Eq. [17] of Lomen and Warrick (1978) and

exp�� a
4�√t �

� � z

√t �
2

�	 � [26] Eq. [31] of Basha (1999), which describe one-dimensional
infiltration in homogeneous soils. Alternatively, replac-
ing Q with Q in Eq. [28] gives an exact solution for thea

2
e azerfc�√a

2 �√t �
� � z

√t �� mean saturation dynamics in homogeneous soils with
random infiltration rates Q. This is a flow scenario, for

The solutions of Eq. [23] through [25] are written as which Foussereau et al. (2000) provide an approxi-
mate solution.

�j(z,t) � �
t

0
�

∞

0
fj(�,�)G(0)(�,z,t � �)d�d� � Braester (1973) demonstrated that the exact location

of a wetting front in a homogeneous soil is given by�
t

0
qjG(0)(0,z,t � �)d� [27]

zf (t) � Q�
t

0
�(0,�)d� [30]

After some algebraic manipulations, Eq. [27] gives
rise to the zeroth-order term, Hence, the first-order approximation of the dynamics

of the mean wetting front, z[1]
f � z(0)

f � z(1)
f is related to�(0)(z,t)

Q
� 
at

�
exp�� a

4�
z

√t
� √t �

2

� � the first-order approximation of the mean Kirchhoff
variable by

z[1]
f (t) � Q�

t

0
�[1](0,�)d� [31]1

2
erfc �√a

2 �z

√t
� √t �� �

It follows from Eq. [30] that the variance of the wetting
front dynamics, � 2

f(t) � zf zf, is given by1
2
(1 � az � at)e azerfc�√a

2 �z

√t
� √t �� [28]

� 2
f(t) � Q2�

t

0
�

t

0
C�(0,�;0,��)d�d�� [32]

and the first-order term, Its first-order approximation is derived by setting C� ≈
C (1)

� , where C (1)
� is the solution of Eq. [17].�(1)

Q
� �

� 2
Y

4 �erfc�√a
2 �z

√t
� √t �� � Figure 1 shows the evolution of the mean saturation

profile (Kirchhoff variable, matrix potential), �[1](z,t),
in a randomly heterogeneous soil with a � 1.0, � 2

Y �
(1 � az)e azerfc�√a

2 �z

√t
� √t �� � 0.4, and � � 1.0. At full saturation, infiltration rate Q*

reaches Keff, the effective saturated conductivity, which
for one-dimensional flow, at large enough times, is givena�

2
e az/2�at/4� 2

√�
�a�(1 � e�z/�) � az

√at
�

by the harmonic mean, Keff � Kh � Kgexp(� 2
Y /2). This

explains why at full saturation �/Q � 1.2, since Q �
Q*/Kg and � 2

Y � 0.4. Also, one can see from Fig. 1 that(1 � e�2az2/t)
√at
2 �exp��az2

4t � �
the front diffuses with time; that is, it does not propagate
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Fig. 1. Mean saturation profiles, �[1] � �(0) � �(1), normalized with the dimensionless flux Q.

in a self-similar manner (as a traveling wave). The main demonstrates that as many as 5000 realizations are re-
quired for the ensemble statistics of � (its variance, to bereason for this behavior is the choice of the constitutive

relationships (Eq. [4]), which preclude the formation of specific) to converge. Moreover, the required number of
realizations increases with time. For multidimensionaltraveling waves even in homogeneous soils (e.g., Braes-

ter, 1973). transient flows, such analyses of convergence, which are
based on transient outputs (e.g., pressure and satura-

Monte Carlo Simulations tion), rather than fixed inputs (e.g., saturated conductiv-
ity), might be impractical.Next, we compare our perturbation solutions with

Another issue related to the accuracy of MCS is thethose obtained from direct Monte Carlo simulations
inability of many existing codes to deal with highly dis-(MCS). The Gaussian sequential simulator SGSIM
continuous coefficients, which enter into each realiza-(Deutsch and Journel, 1992) is used to generate realiza-
tion of the (unsaturated) flow equations. These codestions of the correlated, multivariate Gaussian Y(z) �
are designed to accommodate relatively smooth coeffi-lnKs field with mean Y � 0.0, correlation length � �
cients that arise from geostatistical analyses of data.1.0 and several values of the variance � 2

Y, as specified
(Moment differential equations also posses coefficientsbelow.
that are smoothed by the ensemble averaging.) In ourThe MCS results are often treated as exact, provided
MCS, we employed a backward-difference discretiza-that enough Monte Carlo realizations can be generated.
tion of the convective term in Eq. [8], which is uncon-However, as we discussed in our introduction, there is
ditionally stable. One can easily verify that the MCS,growing evidence to the contrary. In particular, the ques-
which are based on a forward-difference discretizationtion of how many Monte Carlo realizations are enough
of the convective term, lead to a relatively accurate nu-to reproduce accurately the statistics of interest remains
merical solution for the mean �(z,t), but to an erroneousunresolved. It is common to analyze the convergence of
solution for the variance � 2

�(z,t).MCS in terms of the input parameters, such as saturated
Finally, for MCS to remain stable, the size of a gridconductivity, Ks. In our example, it took 1000 realiza-

used to discretize computational domains should de-tions for the sample statistics of Y(z) to converge to its
prescribed distribution with � 2

Y � 0.4. However, Fig. 2 crease as � 2
Y, the variance of log conductivity, increases.

Fig. 2. The normalized variance of reduced saturation, � 2
�/Q2, computed by direct MCS as a function of the number of Monte Carlo realizations.

It is reported at the dimensionless depth z � 0.5 and several values of the dimensionless time t. The variance of log conductivity is � 2
Y � 0.4.
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Fig. 3. Mean reduced saturation (the Kirchhoff variable, matrix potential), �/Q, on the soil surface, z � 0, computed analytically with the first-
order approximation of the moment differential equations (MDE) and the mean-field approximation (MFA), and numerically with the Monte
Carlo simulations (MCS).

Specifically, the discretization interval �z � 0.02 was sient flow in unsaturated heterogeneous soils with
sufficient for � 2

Y � 0.2, while � 2
Y required the discretiza- uncertain hydraulic parameters, and to quantify

tion �z � 0.01. the uncertainty associated with such predictions.
We now proceed to compare the statistics of the This is done by deriving deterministic differential

Kirchhoff variable (saturation, matrix potential), �(z,t), equations for the ensemble moments, mean and
computed with both the first-order analytical solutions (co)variance, of saturation and matrix potential.
of the moment equations and direct MCS. Since the Our approach does not require generation of ran-
dynamics of wetting fronts is related to the dynamics dom fields or variables, upscaling, or linearization
of the Kirchhoff variable on the soil surface, our results of the constitutive characteristics of a soil.
are reported for z � 0. 2. Virtually all previously published moment analyses

Figure 3 provides such a comparison for the mean of unsaturated flow, whether analytical or numeri-
reduced saturation (the Kirchhoff variable, matrix po- cal, have found it necessary to rely on Taylor
tential). Also reported in Fig. 3 is the mean-field approx- expansions of soil constitutive relations. These may
imation, which replaces heterogeneous conductivity lead to major inaccuracies when these relations are
field Ks(z) with its mean Ks and, hence, corresponds to highly nonlinear, as is often the case. Our approach
the zeroth-order solution Eq. [28]. The mean-field ap- obviates the need for such Taylor expansions by
proximation systematically underestimates the surface applying the Kirchhoff transform to the stochastic
saturation, �(0,t), while the saturation estimates pro- Richards equation before its ensemble averaging.
vided by the first-order analytical solution and MCS are 3. We solved our general moment equations analyti-
in good agreement. Another important feature revealed cally for one-dimensional infiltration and com-
by Fig. 3 is that the mean surface saturation increases pared these solutions with direct Monte Carlo sim-
with the degree of heterogeneity, that is, with � 2

Y. ulations. Both approaches yield results that are
The uncertainty associated with the estimates of satu- qualitatively and quantitatively similar.

ration (the Kirchhoff variable, matrix potential) is quan- 4. We demonstrated that for transient flows special
tified by the variance of saturation, � 2

�. Figure 4 depicts care must be paid to ensure the accuracy of Montethe variance of surface saturation, � 2
�(0,t), computed Carlo simulations, since the convergence of the in-analytically as a solution of MDE and numerically with put (saturated conductivity) sample statistics doesMCS. The first-order approximation of � 2

� increases
not guarantee the convergence of the output (satu-asymptotically with time to its limiting value of � 2

Y/2.
ration and pressure) statistics. As time increases,The agreement between the two solutions is worse, and,
more and more realizations are needed for Monteas � 2

Y increases, it deteriorates faster than the agreement
Carlo simulations to converge.between the two solutions for the mean. This is to be

expected, since the perturbation solution for � consists
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APPENDIX A. G(y,x,0) � 0, y � �, [A.5a]
DERIVATION OF THE MIXED MOMENTS

G(y,x,t � �) � 0, y � 	D [A.5b]
Taking the ensemble mean of Eq. [8] gives the mean n•�G(y,x,t � �) � 0, y � 	N [A.5c]flow equation,

Then, �� can be written as
A

��

�t
�

�CA�

�t
� a�1�•(��� � r) �

��(x,t) � �
�

AHinG(y,x,0)dy �

a�1�
t

0
�
	D

�H�n•�yGdyd� � �
t

0
�
	N

Q�Gdyd� ��

�x3
�A � � � AC�� � �C�A � A������ � f [A.1]

�
t

0
�
�

f �Gdyd� � �
t

0
�
���CA�

��
� A�

��

�� �Gdyd� �Subtracting Eq. [A.1] from [8] yields an equation for
the perturbation, ��(x,t),

a�1�
t

0
�
�
����� � r•�yGdyd� �

A
���

�t
� A�

��

�t
�

�CA�

�t
�

�
t

0
�
�
�A��� � A��� � AC�� �

a�1�•����� � a�1�•(���� � r) �
�CA� � �CA� � A����� �G

�y3

dyd� [A.6]
A

�

�x3

���� �
�

�x3

�A��� � A��� �
Operating on Eq. [A.6] with the stochastic differential
operator ��(x)�x, taking the ensemble mean, and ac-AC�� � �CA� � �CA� � A����� � f � x � � [A.2]
counting for statistical independence of the randomly

A similar procedure yields the initial and boundary con- prescribed source and boundary functions gives
ditions

r(x,t) � ��
�

AC�Hin
�xG(y,x,0)dy �

�� � H�in(x) x � � [A.3a]
a�1�

t

0
�
	D

�C�H�x�
T
y Gndyd� � �

t

0
�
	N

C�Q�xGdyd� �
�� � H�(x,t) x � 	D [A.3b]

a�1n•����� � ���� � r � �
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��
�xGdyd� �

n3 �A �� � A��� � A��� � AC�� �

a�1�
t

0
�
�

�x�
T
y G��(x)��(y)��dyd� ��CA� � �CA� � A����� �

Q�(x,t) x � 	N [A.3c] �
t

0
�
�
�A ����� � ��(x)A����x

�G
�y3

dyd� [A.7]
We define a deterministic Green’s function, G(y,x,t � �)

as a solution of the adjoint differential equation Multiplying Eq. [A.6] with ��(x) and taking the ensem-
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ble mean yields the cross-covariance function C��(y,x,t) � This is so, since A(0) � 1 and �(0) � 1.
��(y)��(x,t), Further simplifications are gained by noticing that the

fluctuations of A are much smaller than the fluctuations
C��(y,x,t) � �

�
AC�Hin

G(z,x,0)dz � of �; that is, that � 2
Z and CYZ �� � 2

Y. This leads to Eq.
[13], [14], and to C (1)

A�(x,t) � 0.a�1�
t

0
�
	D

�C�Hn•�zGdzd� � �
t

0
�
	N

C�QGdzd� �
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